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Abstract 

In order to realize dry metal forming, the requirements of the surface layer, e.g. to load-bearing capacity and tribological 

properties are increasing. Therefore, the feasibility of chemical vapour deposition (CVD) of diamond onto tool steel 

1.2379 under atmospheric conditions without a vacuum chamber is investigated, so that there is no limit according to the 

size of the tool. 

For the deposition of CVD diamond coatings, a laser-based plasma CVD process combined with a physical vapour dep-

osition (PVD) process is used. It is shown that a PVD silicon layer serves as diffusion barrier for the subsequent deposition 

of a CVD diamond layer. The diffusion barrier as well as the CVD diamond layer is analysed by laser microscope meas-

urements, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The crystal structure of the diamond 

films is verified by Raman spectroscopy and laser microscope measurements. 

To visualize the coating system, a focused ion beam is used to generate a cross-section. The local deposition of a CVD di-

amond layer onto tool steel without the need for a vacuum chamber is evidenced by these investigations. 
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1 Introduction 

In the process of metal forming, it is common prac-

tice to use lubricants. However, from an economic as 

well as an ecological point of view, there exists a strong 

demand to avoid lubricants in metal-forming processes. 

In order to realize dry metal forming, the requirements of 

the surface layer are increasing in relation to load-bearing 

capacity and tribological properties [1]. One approach is 

to coat the tool surface with a wear-resistant layer. For 

this approach, carbon-based coatings like diamond like 

carbon (DLC) are especially investigated [2]. 

Polycrystalline diamond coatings are also a candi-

date as tool-coating material for pioneering work on lub-

ricant-free metal forming. The deposition of polycrystal-

line diamond coatings onto steel has already been suc-

cessfully researched by various scientists [3]. Direct dep-

osition of polycrystalline diamond onto steel substrates 

was investigated by Buijnsters et al. [4], with the conclu-

sion that diffusion barrier layers are essential in the dep-

osition of high-quality and adherent polycrystalline dia-

mond coatings on steels. Several different materials that 

could serve as a diffusion barrier have been investigated, 

such as CrN [5], TiC/TiN [6], and SiC [7]. The thickness 

of the diffusion barrier varies in the different researches. 

For the case of silicon interlayers, thicknesses between 

0.5 µm [8] and 2 µm [9] can be found in the literature. 

All processes applied for the successful deposition 

of polycrystalline diamond coating onto a steel substrate 

take place in a vacuum chamber. According to the dimen-

sions of forming tools and their complex geometries, a 

chamber-free deposition process is required for the appli-

cation of local wear protection. 

2 Methods 

CVD diamond coatings are deposited by a laser-

based plasma CVD process combined with a PVD pro-

cess (see Fig. 1). The process was explicitly described by 

Schwander [10]. 

The cold-work tool steel X153CrMoV12 (1.2379) in 

annealed condition with a hardness of 240 HV0.5 is used 

as the substrate material. The steel substrate is heated up 

to 250 °C prior to deposition. Afterwards the substrate is 

heated up to the deposition temperature in the range of 

800 °C to 850 °C by an argon-plasma flame with 

2.3 standard litre per minute (slm) of hydrogen with a 

power supply of 4 kW. The preheating is applied until a 

constant surface temperature is measured and then kept 



 

 

constant for two minutes. In this way the thermal expan-

sion of the steel substrate takes place before coating dep-

osition. Hydrogen is introduced to the plasma flame to 

prevent oxidation of the steel substrate. 

 
Fig. 1: Setup of the laser-based plasma chemical vapour deposition 

(CVD) process combined with physical vapour deposition 
(PVD). 

Two silicon carbide precursors, with a diameter of 

3 mm, are fed with a velocity of 0.09 mm/min for 

7.5 min, which leads to a deposition rate between 

1 mg/min and 1.5 mg/min. During deposition the sub-

strate is constantly moving 10 mm back and forth in the 

y-direction to achieve a more homogeneous silicon-coat-

ing surface. 

The diamond nucleation is carried out with a disper-

sion consisting of 200 ml of isopropanol and 210 mg of 

diamond powder with an average crystal size of 0.25 µm 

to 0.50 µm from the company Microdiamant AG. The 

dispersion is applied to the silicon coating by spraying 

with a superfine nebulizer. 

The CVD diamond coating is deposited for 

40 minutes. In 2007, Chen et al. published work showing 

that a higher ratio of methane to hydrogen enhances the 

diamond nucleation [11]. In contrast, a lower ratio of me-

thane to hydrogen leads to a higher growth rate of micro-

crystalline grains. Therefore, deposition is carried out for 

the first five minutes with a higher methane-to-hydrogen 

ratio of 2.5 % to increase the nucleation rate. Afterwards, 

the polycrystalline CVD diamond layer is deposited with 

a ratio of 1.0 % to achieve a higher growth rate. The tem-

perature measured by thermocouples underneath the sub-

strate was regulated to 690 °C during deposition by feed-

back control. Detailed implementation of the feedback 

control was published by Prieske et al. in 2015 [12]. This 

regulated temperature results in a surface temperature of 

1050 °C measured by IMPAC pyrometer IGAR 12-LO. 

3 Results 

3.1 Deposited silicon layer 

The PVD coating is deposited by evaporation of 

solid silicon carbide precursor. In this way, a silicon layer 

is deposited, which is verified by energy dispersive X-ray 

spectroscopy (EDX), as shown in Fig. 2. The iron and 

chromium signals arise from the work tool steel 

X153CrMoV12 substrate, which contains 12 % chro-

mium. 

 
Fig. 2: EDX spectroscopy of the PVD layer obtained by evaporation of 

solid silicon carbide precursor. 

The surface structure of the deposited silicon inter-

mediate layer is shown by scanning electron microscope 

(SEM) measurements in Fig. 3a and 3b, which reveal the 

cauliflower-like structure of the silicon surface. To prove 

that the silicon diffusion barrier is a closed layer that co-

vers the steel surface completely, backscattered electron 

microscopy (BSE) measurements are executed, which 

are shown in Fig. 3a and 3c. The result shows that a 

closed layer is successfully deposited, because the steel 

appears in bright white colour in the BSE measurements. 

 
Fig. 3: a) BSE microscopy of deposited silicon coating, b) close-up 

SEM, and c) BSE microscopy of the silicon layer. 

 
Fig. 4: Cross-section of silicon layer on steel to determine the layer 

thickness. 
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To determine the average thickness of the deposited 

silicon layers, cross-section polishes are done and visual-

ized by laser scanning microscope measurements. In 

Fig. 4 it is shown that the average thickness of the PVD 

silicon layer is 11.1 µm with a standard deviation of 

2.3 µm. 

3.2 Deposited CVD diamond layer 

In Fig. 5a, it is shown by an SEM measurement that 

the deposited silicon layer serves as a diffusion barrier 

for the subsequent deposition of a CVD diamond layer. 

The polycrystalline structure can be seen as well as the 

locally closed diamond layer. In the BSE measurements 

in Fig. 5b and 5c it is visible that the CVD diamond layer 

is not a completely closed layer, because the silicon layer 

can be detected between the single diamond crystals. The 

silicon layer appears white due to electric charging by the 

electron microscopy. 

 
Fig. 5: a) SEM of a locally closed diamond layer; b) and c) BSE mi-

croscopy of CVD diamond layer on silicon diffusion layer. 

 
Fig. 6: a) Raman spectroscopy, b) close-up of photoluminescence peak 

of the SiV centre, and c) photoluminescence spectra measure-

ment on a single diamond crystal. 

The crystals that can be seen in Fig. 5 are proven to 

be diamond by the sharp peak at 1332 cm-1 in the Raman 

spectroscope measurement [13], which can be seen in 

Fig. 6a. Fig. 6b shows the results of the recorded photo-

luminescence, which shows a peak at 738 nm with a full 

width at half maximum of 7 nm. That recorded signal 

shows that silicon-vacancy centres (SiV) exist inside the 

diamond crystals [14]. 

To visualize the coating system, a focused ion beam 

(FIB) is used to generate a cross-section, which is shown 

in Fig. 7a. The average thickness of the coating compo-

sition can be calculated as approximately 31 µm. On 

closer observation (Fig. 7b) of the transition between the 

silicon coating and the CVD diamond layer, the interdig-

itation of the two coatings can be seen. At the transition 

between steel substrate and silicon layer, a gap can be de-

tected. 

 
Fig. 7: a) FIB profile of a CVD diamond coating on a steel substrate 

with a silicon diffusion barrier; b) close-up of the profile. 

To investigate the influence of the applied surface 

temperature of 1050 °C for 40 minutes during the CVD 

process, hardness measurements were executed. As ref-

erence the hardness of the steel substrate in annealed con-

dition was measured to 238 ± 11 HV0.5 (Fig. 8b). In Fig. 

8 the hardness of the steel substrate after the deposition 

process is shown. It can be seen that the steel substrate is 

locally hardened by the applied temperature profile of the 

deposition process. In the centre (measurement position 

0 mm Fig. 8a) a maximum hardness of 777 HV0.5 was 

measured, which decreases towards the edges of the sub-

strate. The coated area of 1 cm2 is marked in Fig. 8a. Un-

derneath the coated area the steel is hardened to a mini-

mum hardness of 600 HV0.5. At the edges of the steel 

substrate the hardness did not change compared to the in-

itial condition. The hardness also decreases with increas-

ing distance, vertically to the coating surface. In a dis-

tance of 2.75 mm a decrease of the hardness of 

200 HV0.5 was determined. 

 
Fig. 8: Result of hardness measurement a) horizontal and b) vertical un-

derneath the coating surface. 
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4 Discussion 

The results show that the laser-based plasma CVD 

combined with a PVD process enables the deposition of 

a coating combination under atmospheric conditions with 

the same machine. The deposition of an intermediate 

layer (diffusion barrier) is essential for the deposition of 

polycrystalline diamond onto steel substrates, as shown 

by the researches of Buijnsters et al. in 2007 [4]. It is 

shown that the vaporization of solid silicon carbide pre-

cursors in the PVD process leads to the deposition of a 

silicon coating on the steel substrate. With a deposition 

duration of 7.5 minutes, a closed silicon coating with an 

average layer thickness of 11.1 µm ± 2.3 µm is achieved. 

The silicon surface shows a cauliflower-like structure. 

The large variety of interlayer materials used for deposi-

tion of diamond onto steel such as, for example, CrN [5], 

TiC/TiN [6], SiC [7], or Al [15] show that there are sev-

eral materials that have the ability to serve as a diffusion 

barrier. 

CVD-diamond deposition onto the silicon coating 

evidences the function as a diffusion barrier, as was also 

confirmed in 2010 by Álvarez et al. [9], who used a vac-

uum chamber process (ion beam deposition) to deposit 

the silicon coating. Due to the way of diamond seeding, 

by spraying with a superfine nebulizer, a low seeding 

density was reached, which might be the reason for not 

achieving a completely closed CVD-diamond layer, even 

after a coating thickness of 31 µm. The purpose of choos-

ing this way of seeding, instead of using an ultrasonic 

bath, was to avoid any restriction of the substrate dimen-

sion. 

The reason for the lift-off between the silicon inter-

layer and the steel substrate (see Fig. 7b) is the tensile 

residual stress, which arises during cooling down of the 

steel substrate, according to the unequal coefficients of 

thermal expansion. The adhesion of the silicon coating to 

the steel substrate needs to be improved and the tensile 

residual stress reduced, before transferring the coating 

system into an application. 

The deposition temperature has a huge impact on the 

hardness of the steel substrate as was determined in 

Fig. 8. The CVD deposition temperature is above the aus-

tenitizing temperature, so that the rapid cooling down (in 

100 s from 1050 °C to 350 °C) of the steel substrate, after 

the extinction of the plasma flame, leads to a hardening 

underneath the coated area. 

Through these researches, the basic requirements for 

chamber-free deposition of CVD-diamond onto steel for 

the application of local wear protection are fulfilled. 

5 Conclusion 

The research results show that a closed silicon layer 

can be deposited onto cold-work tool steel 

X153CrMoV12 by the evaporation of solid silicon car-

bide precursors. It was verified that the silicon layer 

serves as a diffusion barrier, enabling the deposition of 

CVD diamond onto steel substrates. For the first time, 

CVD diamond with a preceding diffusion barrier was de-

posited with one machine under atmospheric conditions 

onto a steel substrate. 
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